

Module Specification

Module Summary Information

1	Module Title	Advanced Mechanics
2	Module Credits	20
3	Module Level	6
4	Module Code	ENG6084

5 Module Overview

Mechanical engineers nowadays solve problems of high and multidisciplinary complexity. Although computational solutions generally lead to reliable results, the engineer should always attempt to validate the findings by alternative methods. This requires a thorough understanding of the underlying problems, but also the approach of reasonable simplification of complex systems without compromising validity.

The module aims to allow you to gain a sound understanding of analytical stress analysis to be able to employ alternative methods to assess numerical predictions.

Learning activities will be predominantly through lectures and tutorials, where practice based problems will be addressed. Laboratories will be used where appropriate to support the understanding of the subject and to strengthen the learned.

6	Indicative Content
Deflec	tion of structurally determinate and indeterminate members using Castigliano's theorem, Unit
Load r	nethod and Macaulay's method
Shear	stress distribution in cross-sections due to bending
Bendir	ng and Torsion of flexural members of non-symmetrical cross-sections
Plastic	c deformation of beams with symmetric and non-symmetric cross-sections
Stress	es and strains in thick walled and compound cylinders under constant pressure loading
Stress	, strain and interference calculations for rotating discs
Stress	es and strains in axisymmetric plates in bending

7	Module Learning Outcomes	
	Or	n successful completion of the module, students will be able to:
	1	Determine and analyse stresses and deformations in complex engineering components.
	2	Specify and apply appropriate stress analysis techniques in failure analysis and to ensure adequate design.

8	Module Asse	sessment			
Learning					
Outco	ome				
		Coursework	Exam	In-Person	
1-2			100%		

Breakdown Learning and Teaching Activities		
Learning Activities	Hours	
Scheduled Learning (SL) includes lectures, practical classes and workshops, peer group learning, Graduate+, as specified in timetable	48	
Directed Learning (DL) includes placements, work-based learning, external visits, on-line activity, Graduate+, peer learning, as directed on VLE	0	
Private Study (PS) includes preparation for exams	152	
Total Study Hours:	200	